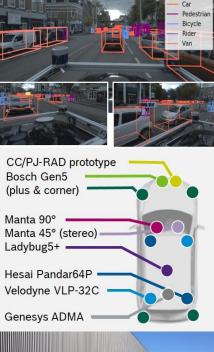
Knowledge-infused learning for autonomous driving

K-iLKGC21

May 3, 2021

Cory Henson, Bosch Research

Levels of autonomous driving

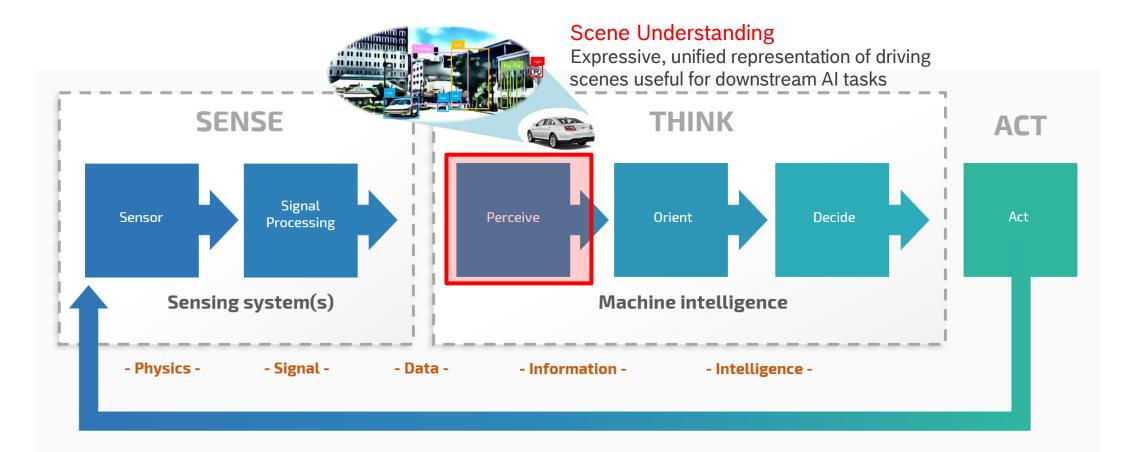


BOSCH

2 Cory Henson (Bosch Research) | 2021-05-03 © 2020 Robert Bosch LLC and affiliates. All rights reserved.

https://blog.netapp.com/how-to-build-a-data-pipeline-for-autonomous-driving/

Sense, think, act



3 Cory Henson (Bosch Research) | 2021-05-03 © 2020 Robert Bosch LLC and affiliates. All rights reserved.

https://autonomy.sandia.gov/whatisautonomy/index.html

Knowledge-infused learning for scene entity prediction Knowledge graph embeddings of driving scenes enable the prediction of additional undetected entities in the scene	INSTITUTE MAIISC UNIVERSITY OF SOUTH CAROLINA
Learning visual models using a knowledge graph as a trainer Joint learning of image embeddings with knowledge graph embeddings improves transfer learning on road-sign recognition tasks	Universität Trier
Scene-specific subgraph embeddings Extraction and embedding of subgraphs enables a local, contextualized interpretation of a scene, leading to improved scene understanding	Universität Trier
Explainable embedding-based clustering over knowledge graphs Knowledge graph embeddings of driving scenes create clusters of scenes. Rule-mining techniques are be used to derive descriptions, or explanations, for these clusters	Max Planck Institute for Intelligent Systems

Knowledge-infused learning for scene entity prediction Knowledge graph embeddings of driving scenes enable the prediction of additional undetected entities in the scene	INSTITUTE MAIISC UNIVERSITY OF SOUTH CAROLINA
Learning visual models using a knowledge graph as a trainer Joint learning of image embeddings with knowledge graph embeddings improves transfer learning on road-sign recognition tasks	Universität Trier
Scene-specific subgraph embeddings Extraction and embedding of subgraphs enables a local, contextualized interpretation of a scene, leading to improved scene understanding	Universität Trier
Explainable embedding-based clustering over knowledge graphs Knowledge graph embeddings of driving scenes create clusters of scenes. Rule-mining techniques are be used to derive descriptions, or explanations, for these clusters	Max Planck Institute for Intelligent Systems

Knowledge-infused learning for scene entity prediction Knowledge graph embeddings of driving scenes enable the prediction of additional undetected entities in the scene	INSTITUTE MAIISC UNIVERSITY OF SOUTH CAROLINA
Learning visual models using a knowledge graph as a trainer Joint learning of image embeddings with knowledge graph embeddings improves transfer learning on road-sign recognition tasks	Universität Trier
Scene-specific subgraph embeddings	
Extraction and embedding of subgraphs enables a local, contextualized interpretation of a scene, leading to improved scene understanding	Universität Trier

Knowledge-infused learning for scene entity prediction Knowledge graph embeddings of driving scenes enable the prediction of additional undetected entities in the scene	INSTITUTE MAIISC UNIVERSITY OF SOUTH CAROLINA
Learning visual models using a knowledge graph as a trainer Joint learning of image embeddings with knowledge graph embeddings improves transfer learning on road-sign recognition tasks	Universität Trier
Scene-specific subgraph embeddings Extraction and embedding of subgraphs enables a local, contextualized interpretation of a scene, leading to improved scene understanding	Universität Trier
Explainable embedding-based clustering over knowledge graphs Knowledge graph embeddings of driving scenes create clusters of scenes. Rule-mining techniques are be used to derive descriptions, or explanations, for these clusters	Max Planck Institute for Intelligent Systems

Knowledge-infused learning for scene entity prediction

In collaboration with Ruwan Wickramarachchi Al Institute, University of South Carolina

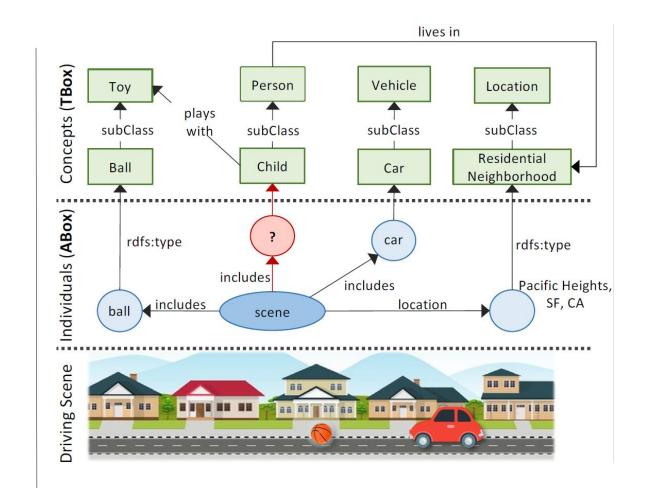
Entity prediction w/ knowledge-infused learning

Goal

Predict entities in a scene, given current and background knowledge of the scene

Sample question

What is the probability that a child is nearby?



Entity prediction w/ knowledge-infused learning

Goal

Predict entities in a scene, given current and background knowledge of the scene

Sample question

What is the probability that a child is nearby?

Solution

Train an entity prediction model with a KG of scenes, applying knowledgeinfused learning techniques

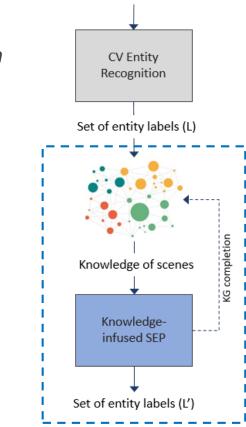
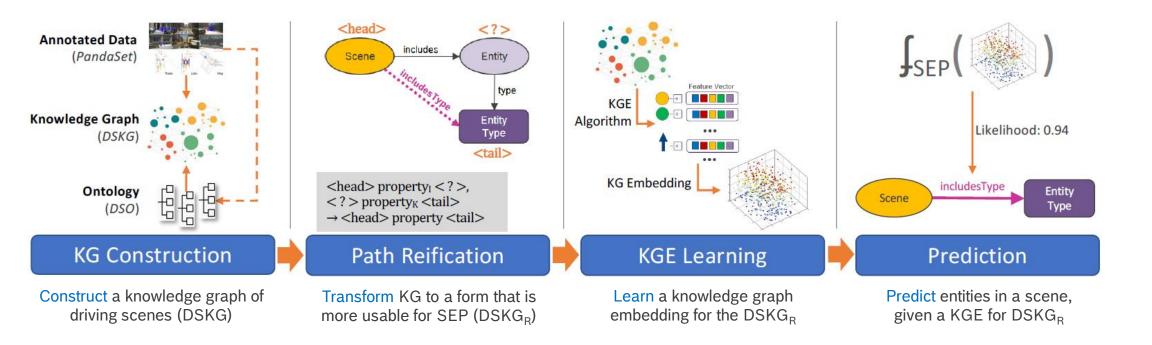


Image of scene

Architecture for scene entity prediction (SEP)



Knowledge graph transformation

Goal: Map entity prediction to a KG link prediction problem

- Link prediction is a well known problem in KG completion literature
- Link prediction is the primary objective of knowledge graph embeddings (KGEs)

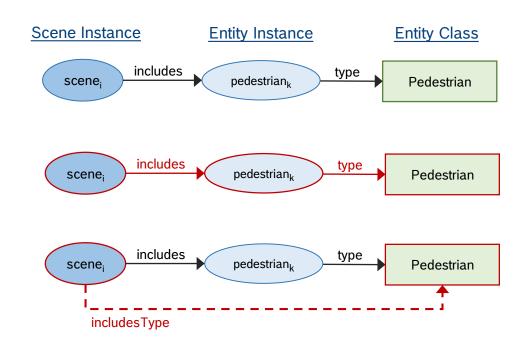
Challenge: SEP is a path prediction problem

- For a given scene, predict the *entity types* linked through an entity instance
- KG link prediction DOES NOT handle path prediction

Solution: Path reification

- Create a direct link between a scene and an entity class whenever the following path is available: Scene-Instance → Entity-Instance → Entity-Class
- The KG with these additional reified links is called DSKG_R
- Use LP to make predictions about this new relation: includesType
- ▶ Path reification rule:

$\langle s_i, includes, e_j \rangle \land \langle e_j, rdfs:type, ? \rangle \Rightarrow \langle s_i, includesType, ? \rangle$

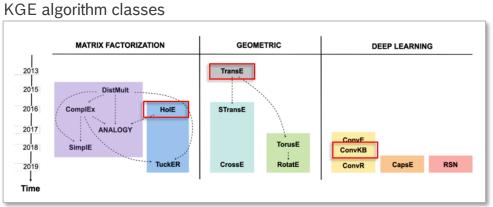


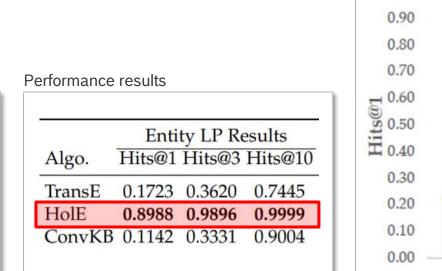
Performance of scene entity prediction

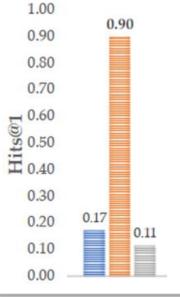
Learn KGEs and evaluate performance of SEP

Choose one prototype KGE algorithm from each class

- Geometric: TransE
- Matrix Factorization: HolE
- Deep Learning: ConvKB







 $[\]equiv TransE \equiv HolE \equiv ConvKB$

Opportunities for knowledge-infused learning in AD

Unification and integration

AD data is multimodal, requiring significant integration for a unified and complete scene understanding; at both the symbolic and sub-symbolic level.

Coherency, consistency and correctness

AD decision making has meaningful consequences and must be of high quality; thus the quality of determinant information is paramount.

Explainability

Trust is essential for adoption of AD technology. The ability to explain '*why*' a decision is made is necessary for enabling such trust.

Ethics, values, accountability and law

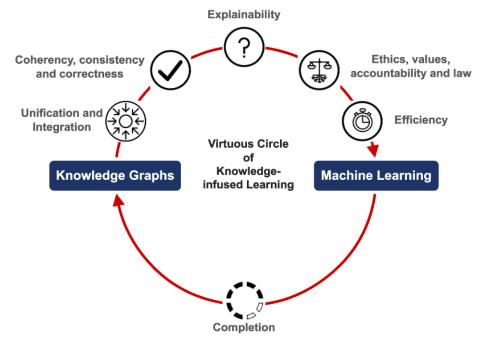
Rules of the road are encoded as laws and regulations. AD systems should understand and abide by all rules.

Efficiency

Within an 'open world' environment like driving, many encountered situations have only sparse relevant data. The integration of background knowledge, i.e. commonsense, could fill this gap.

Completion

Most knowledge about a scene is derived through ML and thus probabilistic in nature. KG completion should take this into consideration.



Thank

You

EXTRAS

