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ABSTRACT
Large Language Models (LLMs) encode meanings of words in the
form of distributed semantics. Distributed semantics capture com-
mon statistical patterns among language tokens (words, phrases,
and sentences) from large amounts of data. LLMs perform ex-
ceedingly well across General Language Understanding Evalua-
tion (GLUE) tasks designed to test a model’s understanding of
the meanings of the input tokens. However, recent studies have
shown that LLMs tend to generate unintended, inconsistent, or
wrong texts as outputs when processing inputs that were seen
rarely during training, or inputs that are associated with diverse
contexts (e.g., well-known hallucination phenomenon in language
generation tasks). Crowdsourced and expert-curated knowledge
graphs such as ConceptNet are designed to capture the meaning
of words from a compact set of well-defined contexts. Thus LLMs
may benefit from leveraging such knowledge contexts to reduce
inconsistencies in outputs. We propose a novel ensemble learning
method, the Interpretable Ensemble Representation Learning (IERL),
that systematically combines LLM and crowdsourced knowledge
representations of input tokens. IERL has the distinct advantage
of being interpretable by design (when was the LLM context used
vs. when was the knowledge context used?) over state-of-the-art
(SOTA) methods, allowing scrutiny of the inputs in conjunction
with the parameters of the model, facilitating the analysis of mod-
els’ inconsistent or irrelevant outputs. Although IERL is agnostic to
the choice of LLM and crowdsourced knowledge, we demonstrate
our approach using BERT and ConceptNet. We report improved
or competitive results with IERL across GLUE tasks over current
SOTA methods and significantly enhanced model interpretability.

KEYWORDS
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1 INTRODUCTION
LLMs have performed exceedingly well on the GLUE benchmark
tasks [1]. GLUE tasks measure the machine’s comprehension on su-
pervised learning-based natural language processing tasks, such as

Quora Question Pairs to check question redundancy, and Recogniz-
ing Textual Entailment to check if two sentences share entailment,
neutral, or contraction relations [2]. LLMs learn trillions of parame-
ters after training over a humongous amount of data. Irregularities
in the data (for example, little or highly varying language token
patterns or contexts) causes LLMs to hallucinate - generating in-
consistent outputs for similar inputs.

Crowdsourced and curated knowledge graphs (KGs), such as Con-
ceptNet, are designed to capture meanings of commonly used words
using a compact set of contexts agreed by humans [3, 4]. As a result,
representations learned from ConceptNet are less likely to suffer
from distributional irregularities among the tokens. Consequently,
it is a promising and an active research topic on utilizing repre-
sentations from KGs to potentially mitigate irregularities, while
processing input tokens via LLM representations. In this paper, we
focus on developing a learning method that systematically incor-
porates representations from both KGs and LLMs to address the
following unresolved questions. Q1: Can we design an approach to
combine crowdsourced knowledge and LLM representations to obtain
an integrated representation, in order to mitigate the model hallu-
cination? Q2: Can we achieve an interpretable design - i.e., can we
tractably discern for what inputs the LLM hallucinates on and what
knowledge context improves representation quality? Next, we briefly
review existing methods that seek to infuse representations from
KGs and LLMs and their relevance to questions Q1 and Q2.

1.1 Related Work on Combining Knowledge
and LLM Representations

There is an extensive literature on combining LLMs and knowl-
edge representations to leverage contextual information among
language tokens from both [5]. The representations are then pro-
cessed through a task-specific neural network. Here we will cover
the four SOTA approaches, KALA, K-Adapter, TDLR, and GCT,
broadly representing two kinds of methods - (1) Combining repre-
sentations at the input level before passing it through the neural
network (KALA and K-Adapter) and (2) Combing representations at
the parametric level, i.e., modify the parameters of the task-specific
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neural network and the resulting token meaning interpretations
(TDLR and GCT) [6–9].

KALA modifies the input LLM representations for tokens by
using a weighted aggregate of other tokens connected in the knowl-
edge graph. K-Adapter trains “adapter” models for encoding knowl-
edge representations and combines the LLM and adapter repre-
sentations at the input level. With KALA and K-Adapter, it is not
possible to keep track of and understand how the representations
are incorporated into the neural network after the input stage in-
ternally. Ablation studies and post-hoc approximate interpretations
using LIME, etc., provide representation interpretability (was the
knowledge context important or the data context?)[10]. However,
it is unclear how far the approximation is off from the truth, which
is crucial to evaluating and systematically addressing LLM hallu-
cination issues. Furthermore, the effect of KALA and K-Adapter
representations on hallucinations has not been studied. Thus, KALA
and K-Adapter do not fully address Q1 or Q2. TDLR operates on
the self-attention mechanism of transformers by modifying the at-
tention or weight matrices to hard-code graph connections among
language tokens. TDLR does this once, in the first self-attention
block, and then allows model fine-tuning to continue as is. It is
unclear if the attention matrix modification is retained during the
fine-tuning across the remaining transformer blocks. GCT is simi-
lar to TDLR and differs in the specifics of the self-attention matrix
modification operation. TDLR and GCT suffer from similar issues
as KALA and K-Adapter towards addressing Q1 and Q2.

2 BACKGROUND AND MOTIVATION
In this section, we describe the GLUE tasks, what hallucination
looks like when solving the GLUE tasks and the theoretical motiva-
tions for the IERL algorithm presented in Section 3.

2.1 Task Descriptions and Hallucinations
We experiment with similarity or entailment GLUE tasks that take a
pair of sentences as input and format its output as a +1 or a −1. For
the similarity tasks, +1 and −1 correspond to similar or dissimilar
input sentences respectively. For the entailment tasks, +1 and -1
correspond to entailment and contradiction, respectively.

We use 𝑋 to denote the dataset, and 𝑥 is an instance in the
dataset 𝑋 . Each 𝑥 is a three-tuple composed of 𝑥 [1]: sentence 1,
𝑥 [2]: sentence 2, and the label 𝑦.

Hallucinations. Hallucinations refers to inconsistent model
outputs for similar inputs resulting from statistical irregularities in
the data. Since this notion is often used in the context of language
generation tasks, we clarify the context in which we use it in this
paper. To formalize this notion, we batch our instances into random
batches. We note the convergence rate variations of the training
loop across these batches, where each batch is of size equal to 80%
of the training dataset 𝑋 . We find that for the GLUE tasks, SOTA
fine-tuning results in a high convergence rate variance (ranges
from 13 − 45 iterations). This suggests that there may be a high
degree of irregularity in the statistical properties across the batches.
Therefore, we can expect a model trained on these datasets to
generate inconsistent outputs for similar inputs, i.e., suffer from
hallucinations.

2.2 Ensemble Learning Approach
To fine-tune the models for GLUE tasks, a few feedforward neural
network layers are added and trained using backpropagation. Such a
training procedure works well when there is a generalizable pattern
across the instances in the fine-tuning dataset (regularly occurring
statistical patterns). To tackle the issue of irregularities, we propose
using example patterns from each instance and aggregating them
using an ensemble learning approach. We can think of an example
pattern as one that maps a given instance to its output in the task-
specific dataset, which can be seen as (an instance level) model and
define an ensemble function 𝑔(𝑧) for a new point instance 𝑧 as an
ensemble of weighted contributions from similar instances in the
dataset 𝑋 as

𝑔(𝑧) =
∑︁
𝑥

(𝛼1
𝑥 [1] ⊙ ⟨𝑧, 𝑥 [1]⟩ + 𝛼2

𝑥 [2] ⊙ ⟨𝑧, 𝑥 [2]⟩). (1)

Here ⊙ refers to a product operation defined in the algorithm and
experimentation sections, and ⟨·⟩ refers to a suitable similarity
computation.

2.3 Utilizing Knowledge Graph Contexts
The ensemble approach formulation allows the expressiveness to
model both generalizability across instances and instance-level de-
tails. Examining the ensemble model’s parameters lets us interpret
whether an instance shows irregular patterns. However, it does not
yet incorporate a mechanism to solve the irregularity issue during
model learning. Here we posit that combining LLM and knowledge
graph representations using an ensemble approach allows us to in-
terpret instances for their pattern regularities and draw from either
the LLM or knowledge contexts to solve the irregularity resulting
in high performance that hallucinates less.

Thus, we expand the formulation in (1) to describe the operation
of combining LLM and knowledge representations as

𝑔 (𝑧 ) =
∑︁
𝑥

(𝛼𝑠𝑖𝑚
𝐿𝐿𝑀

· [ ⟨𝑧, 𝑥 [1] ⟩𝑠𝑖𝑚
𝐿𝐿𝑀

⟨𝑧, 𝑥 [2] ⟩𝑠𝑖𝑚
𝐿𝐿𝑀

] + 𝛼𝑠𝑖𝑚
𝐾𝐺

· [ ⟨𝑧, 𝑥 [1] ⟩𝑠𝑖𝑚
𝐾𝐺

⟨𝑧, 𝑥 [2] ⟩𝑠𝑖𝑚
𝐾𝐺

] )

(2)

Here, · refers to the dot product between vectors, ⟨·⟩𝑠𝑖𝑚
𝐿𝐿𝑀

refers to
a similarity measure between the LLM representations, and ⟨·⟩𝑠𝑖𝑚

𝐾𝐺
refers to a similarity measure between the KG embedding represen-
tations. The 𝛼𝑠𝑖𝑚

𝐿𝐿𝑀
and 𝛼𝑠𝑖𝑚

𝐾𝐺
are two dimensional vectors.

Aggregation Methods. Aggregation as a method to reduce sta-
tistical irregularities such as high variance has been well-studied in
statistical learning theory literature [11]. The ensemble formulation
in (2) can be seen as aggregation over instances in the dataset 𝑋 .
In this work, we experiment with two types of aggregation, the
average of the instance representations and using averages over
higher-order moment representations. We can expect LLMs trained
on very large amounts of data to tend to the normal distributional
trend in the underlying data distribution. Therefore the average
(first-order moment) and variance (second-order moment) of groups
of instance representations are sufficient statistics to describe the
underlying distribution. However, for smaller number of data in-
stances (such as in GLUE task datasets), it may be necessary to
utilize averages over higher order moments as sufficient statistics.
We experiment with both types of aggregation and compare the
results.
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3 THE INTERPRETABLE ENSEMBLE
REPRESENTATION LEARNING (IERL)
ALGORITHM

Figure 1 shows an illustration of the IERL optimization step - (a)
Shows the dataset 𝑋 (e.g., Recognizing Textual Entailment) and its
instances 𝑥𝑖 indexed by 𝑖 . 𝑡𝑖 [1] and 𝑡𝑖 [2] denote the BERT represen-
tations of sentence 1: 𝑥𝑖 [1] and 2: 𝑥𝑖 [2] from instance 𝑖 . 𝑐𝑖 [1] and
𝑐𝑖 [2] denote the ConceptNet representations of sentences 1 and
2 from instance 𝑖 . (b) Shows how similar and dissimilar instances
to 𝑥𝑖 [1] are constructed and aggregated for the cases of 𝑦𝑖 == 1
and −1 respectively. (c) Shows one step of optimization in detail
corresponding to line 22 in Algorithm 3 (d) Shows two methods
of aggregation over instances - Averaging and Moment-Based (Al-
gorithm 2) aggregation. Algorithm 1 and 2 detail the IERL and

6HQWHQFH�����[L>�@
%(57������������WL>�@
&RQFHSW1HW��FL>�@

6HQWHQFH�����[L>�@
%(57������������WL>�@
&RQFHSW1HW��FL>�@

6LPLODULW\�/DEHO
\L

'DWDVHW�;

,QVWDQFH�L�ĺ�

�D�

�E� ,I�\L�  ��� ,I�\L�  ���

$JJUHJDWHG
6LPLODU�6HW

1�URZV

%(57����������WL
VLP>�@� �DJJ�WL>�@��WL>�@�

&RQFHSW1HW��FL
VLP>�@� �DJJ�FL>�@��FL>�@�

%(57����������WL
VLP>�@� �DJJ�WL>�@�

&RQFHSW1HW��FL
VLP>�@� �DJJ�FL>�@�

$JJUHJDWHG
'LVVLPLODU�6HW

%(57����������WL
GLV>�@� �DJJ�����WP>�@��WP>�@�������䌔P�L

&RQFHSW1HW��FL
GLV>�@� �DJJ�����FP>�@��FP>�@�������䌔P�L

%(57���������WL
VLP>�@� �DJJ�WL>�@�����WP>�@��WP>�@�������䌔P�L

&RQFHSW1HW��FL
GLV>�@� �DJJ�FL>�@�����FP>�@��FP>�@�������䌔P�L

䎭�±
��

��

��

��

Į%(57
GLV

Į%(57
VLP

Į&RQFHSW1HW
GLV

Į&RQFHSW1HW
VLP

WL>�@
7�䏙�WL

GLV>�@
WL>�@

7�䏙�WL
VLP>�@

FL>�@
7�䏙�FL

GLV>�@
�FL>�@

7�䏙�FL
VLP>�@

�

PLQ�
Į[>�@

� Į%(57
VLP��������Į%(57

GLV���
Į&RQFHSW1HW

VLP���Į&RQFHSW1HW
GLV

�

�

/DEHO�
9HFWRU

�F�

)RU�HDFK�LQVWDQFH�L

Į[>�@

�������������������������
±
�

�W>�@��

�W>�@��
�

������������������������

$JJUHJDWLRQ�)XQFWLRQV�DJJ�������([DPSOH��DJJ�W>�@��W>�@�� �"

�G�

%DVHOLQH��$YHUDJLQJ 2XU�0HWKRG��0RPHQW�%DVHG

W>�@

W>�@
�

�
±
�

�������������������������
±
�

�W>�@��

�W>�@��
�

������������������������

�������������������������
±
�

�W>�@��

�W>�@��
�

������������������������
____ «__

__���FRQFDWHQDWH

�WK�0RPHQW �VW�0RPHQW �QG�0RPHQW

Figure 1: (a) Shows the dataset𝑋 (e.g., Recognizing Textual En-
tailment (RTE)) and its instances 𝑥𝑖 indexed by 𝑖 (𝑖 = 1, . . . , 𝑁 ).
The BERT representations of sentence 1: 𝑥𝑖 [1] and 2: 𝑥𝑖 [2]
from instance 𝑖 are denoted by 𝑡𝑖 [1] and 𝑡𝑖 [2]. The Concept-
Net representations of sentences 1 and 2 from instance 𝑖 are
denoted by 𝑐𝑖 [1] and 𝑐𝑖 [2], respectively. (b) Shows how similar
and dissimilar instances to 𝑥𝑖 [1] are constructed and aggre-
gated for the cases of 𝑦𝑖 = 1 and −1, respectively. (c) Shows
one of the optimization problems in detail corresponding to
line 22 in algorithm 3. (d) Shows two methods of aggregation
over instances - Averaging and Moment-Based (algorithm 2)
aggregation.

aggregation algorithm, respectively.

4 EXPERIMENTAL SECTION AND RESULTS
In our experiments, we use BERT as the choice of 𝐿𝐿𝑀 represen-
tations and ConceptNet NumberBatch embeddings for the choice
of 𝐾𝐺 representations in the IERL algorithm (3). We use gradient
descent as our optimization procedure, and use grid search to tune
hyperparameters for optimization. For the computation of higher

Algorithm 1 Interpretable Ensemble Representation Learning
(IERL)
1: Inputs: Dataset: 𝑥 ∈ 𝑋 ⊲ 𝑥 = (𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒1, 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒2, 𝑙𝑎𝑏𝑒𝑙), see

section 2.1
2: Models = { } ⊲ Initialize dictionary to store models for all

sentences in 𝑋
3: for 𝑖 ∈ 𝑋 do ⊲ i indexes instance 𝑥
4: 𝑥𝑖 = 𝑋 [𝑖] ⊲ ith instance
5: 𝑡𝑖 [1], 𝑡𝑖 [2] = 𝐿𝐿𝑀 (𝑥𝑖 [1]), 𝐿𝐿𝑀 (𝑥𝑖 [2]) ⊲ LLM

representations for sentences
6: 𝑐𝑖 [1], 𝑐𝑖 [2] = 𝐾𝐺 (𝑥𝑖 [1]), 𝐾𝐺 (𝑥𝑖 [2]) ⊲ KG representations

for sentences
7: 𝑦 = 𝑥 [3] ⊲ Label for this instance
8: for 𝑗 ∈ {1, 2} do ⊲ j indexes each sentence in the instance
9: if y == +1 then ⊲ Similar and dissimilar instance

aggregation
10: 𝑡𝑠𝑖𝑚

𝑖
[ 𝑗] =agg( [𝑡𝑖 [1], 𝑡𝑖 [2]])

11: 𝑐𝑠𝑖𝑚
𝑖

[ 𝑗] =agg( [𝑐𝑖 [1], 𝑐𝑖 [2]])
12: 𝑡𝑑𝑖𝑠

𝑖
[ 𝑗] =agg( [.., 𝑡𝑚 [1], 𝑡𝑚 [2], ..]),∀𝑚 ≠ 𝑖

13: 𝑐𝑑𝑖𝑠
𝑖

[ 𝑗] =agg( [.., 𝑐𝑚 [1], 𝑐𝑚 [2], ..]),∀𝑚 ≠ 𝑖

14: else if y == -1 then ⊲ Similar and dissimilar instance
aggregation

15: 𝑡𝑠𝑖𝑚
𝑖

[ 𝑗] =agg( [𝑡𝑖 [1]])
16: 𝑐𝑠𝑖𝑚

𝑖
[ 𝑗] =agg( [𝑐𝑖 [1]])

17: 𝑡𝑑𝑖𝑠
𝑖

[ 𝑗] =agg( [𝑡𝑖 [2], .., 𝑡𝑚 [1], 𝑡𝑚 [2], ..]),∀𝑚 ≠ 𝑖

18: 𝑐𝑑𝑖𝑠
𝑖

[ 𝑗] =agg( [𝑐𝑖 [2], .., 𝑐𝑚 [1], 𝑐𝑚 [2], ..]),∀𝑚 ≠ 𝑖

19: 𝛼𝑖 [ 𝑗] = [𝛼𝑠𝑖𝑚
𝐿𝐿𝑀

, 𝛼𝑑𝑖𝑠
𝐿𝐿𝑀

, 𝛼𝑠𝑖𝑚
𝐾𝐺

, 𝛼𝑑𝑖𝑠
𝐾𝐺

] ⊲ parameters for
instance 𝑖 , sentence 𝑗

20: 𝐼 = [1,−1, 1,−1]
21: 𝐷 = [𝑡𝑖 [ 𝑗] · 𝑡𝑠𝑖𝑚𝑖 [ 𝑗], 𝑡𝑖 [ 𝑗] · 𝑡𝑑𝑖𝑠𝑖 [ 𝑗], 𝑐𝑖 [ 𝑗] · 𝑐𝑠𝑖𝑚𝑖 [ 𝑗], 𝑐𝑖 [ 𝑗] ·

𝑐𝑑𝑖𝑠
𝑖

[ 𝑗]]
22: Optimization until convergence: Minimize 𝑔𝑖 [ 𝑗] = | |𝐼 −

𝛼𝑖 [ 𝑗] ⊙ 𝐷 | |22 + ||𝛼𝑖 [ 𝑗] | |11
23: Models[𝑥𝑖 [ 𝑗]] = (𝑔𝑖 [ 𝑗], 𝛼𝑖 [ 𝑗]) ⊲ Store model for

instance 𝑖 , sentence 𝑗
24: return Models

Algorithm 2 Aggregation Algorithm (agg)
1: Inputs: list of vectors 𝑉
2: 𝑎𝑔𝑔𝑉 = [ ]
3: for 𝑣 ∈ 𝑉 do ⊲ calculate element wise powers of the vector

elements
4: 𝑣0, 𝑣1, 𝑣2, 𝑣3 = 𝑣0, 𝑣1, 𝑣2, 𝑣3

5: 𝑣𝑐𝑜𝑛𝑐𝑎𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑣0, 𝑣1, 𝑣2, 𝑣3) ⊲ Concatenate the power
vectors

6: 𝑎𝑔𝑔𝑉 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣𝑐𝑜𝑛𝑐𝑎𝑡 ) ⊲ add to list of vectors to aggregate
7: return𝑚𝑒𝑎𝑛(𝑎𝑔𝑔𝑉 ) ⊲ return average of all lists in 𝑎𝑔𝑔𝑉

order moment representations in algorithm 2, we execute each
for loop iteration in parallel. We initialize the parameters 𝛼𝑖 [ 𝑗] for
each (𝑖, 𝑗) using a 0 mean, 𝐼 covariance 4d-gaussian distribution. We
test our method on the GLUE tasks: Quora Question Pairs (QQP),
Question-Answering NLI (QNLI), Multi-Genre NLI (MNLI), RTE,
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Stanford Sentiment Treebank v2 (SST-2), andWinograd NLI (WNLI)
pertaining to two types of tasks:

(1) Sentence Similarity: Consists of input sentence pairs and
a 1 or 0 denoting if the pairs are similar or not (we refor-
mulate to 1 and −1) - QQP, and STS

(2) Sentence Entailment: Consists of input sentence pairs and
label from among “entailment, contradiction, neutral” (we
reformulate to 1 for entailment and −1 for contradiction) -
QNLI, WNLI, MNLI, and RTE

We also convert our vectors to unit vectors before computing dot
products (line 21 in IERL Algorithm - 3).

Baseline Model. For our baseline model we implement IERL
using a simple average for aggregation (instead of computing mo-
ments using Algorithm 2). We call this IERLB. We present our
evaluation results in the order that they address the questions Q1
and Q2 introduced in section 1.

4.1 Quantitative Evaluation - Addresses Q1
We report accuracy measures of our method against the baseline
IERLB and the current leader on the GLUE leaderboard and see
that the performance of IERL shows competitive performance even
against state-of-the-art performance. We also compute #Optimiza-
tion steps using randomly sampled batches of size 80% of the whole
dataset per sample and tabulate the range (min-max)1. We see that
the range is significantly higher using an implementation of BERT
(BERT (Ours) - Vanilla BERT with 6 layers and fine-tuning) com-
pared to both versions of IERL. Furthermore, higher-order moments
also show a much faster convergence of 7-13 steps vs. 20-30 and
20-45 steps. We use up to fourth-order moments in our experiments,
i.e., 0-3.

System STS QQP QNLI WNLI MNLI RTE #Opt
GLUE 93.5 90.9 96.7 97.9 92.5 93.6 -
BERT 89.7 88.7 93.5 93.3 81.5 88.3 20-45
IERLB 90.89 86.41 92.3 90.11 88.53 90.4 20-30
IERL 93.55 90.51 95.56 98.7 92.08 92.3 7-13

Table 1: Comparing IERL performance on similarity and en-
tailment GLUE tasks. We also see that the # of Optimization
steps (#Opt) stabilizes using the IERL training method. IERL
shows competitive performance even against state-of-the-art
performance. Using higher-order moments in IERL shows
a much faster convergence of 7-13 steps vs. 20-45 and 20-30
steps.

4.2 Qualitative Evaluation - Addresses Q2
Figure 2 shows an example inference output using IERL for a group
of test sentences and an anchor sentence 𝑧 (𝑧 chosen for ease of
illustration). The figure shows a group of instances shown in the
oval and rectangular boxes (including 𝑧) and similarity measure-
ments. For a pair of instances 𝑧 and one other instance from the
group shown (let it be denoted by 𝑧2), we first find the closest
1We are currently running fine-tuning using the leaderboard model and will report
#Optimization-Steps range in future work

sentences 𝑥1, 𝑥2 from the training set 𝑋 and compute two simi-
larities as 𝑠1 = ˆ𝐵𝐸𝑅𝑇 (𝑥1) · ˆ𝐵𝐸𝑅𝑇 (𝑥2) and 𝑠2 = ˆ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 (𝑥1) ·

ˆ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 (𝑥2), where (̂.) represents normalizing the vectors as
unit vectors. We display the greater of the two. The shapes are
highlighted in green when the sum of the similarities is greater
than or equal to 𝑀𝑜𝑑𝑒𝑙𝑠 [𝑥1] · 𝑀𝑜𝑑𝑒𝑙𝑠 [𝑥2], i.e., inference value =
1 (line 23 in algorithm 3) and highlighted in pink otherwise, i.e.,
inference value = -1. The rectangular shape denotes the 𝑠1 ≥ 𝑠2,
and the oval shape denotes that 𝑠2 ≥ 𝑠1 (the parameter values also
reflect the same in 𝛼𝑥1 and 𝛼𝑥2). Thus IERL is designed to provide
a simple method to interpret the inference results for a group of
test sentences.
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Figure 2: Shows an example inference output using IERL for
a group of test sentences along with an anchor sentence 𝑧 (𝑧
chosen for ease of illustration). The figure shows a group of
instances shown in the oval and rectangular boxes (including
𝑧) and similarity measurements. For a pair of instances 𝑧 and
one other instance from the group shown (let it be denoted by
𝑧2), we first find the closest sentences 𝑥1, 𝑥2 from the training
set𝑋 and compute two similarities as 𝑠1 = ˆ𝐵𝐸𝑅𝑇 (𝑥1) · ˆ𝐵𝐸𝑅𝑇 (𝑥2)
and 𝑠2 = ˆ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 (𝑥1) · ˆ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑁𝑒𝑡 (𝑥2), where (̂.) repre-
sents normalizing the vectors as unit vectors. We display
the greater of the two. The shapes are highlighted in green
when the sum of the similarities is greater than or equal to
𝑀𝑜𝑑𝑒𝑙𝑠 [𝑥1] ·𝑀𝑜𝑑𝑒𝑙𝑠 [𝑥2], i.e., inference value = 1 (line 23 in al-
gorithm 3) and highlighted in pink otherwise, i.e., inference
value = -1. The rectangular shape denotes the 𝑠1 ≥ 𝑠2, and
the oval shape denotes that 𝑠2 ≥ 𝑠1 (the parameter values
also reflect the same in 𝛼𝑥1 and 𝛼𝑥2). Thus IERL is designed
to provide a simple method to interpret the inference results
for a group of test sentences.

5 CONCLUSION AND FUTUREWORK
In this work, we propose Interpretable Ensemble Representation
Learning (IERL) as an ensemble technique that demonstrates the in-
terpretable combination of LLM and knowledge representations to
result in a high-performance model that is robust to hallucinations
and results in faster convergence in the number of optimization
steps. Through our experiments, we see the promise of IERL as
a method that advances research towards combining LLMs and
knowledge graphs that retain both high performances and are in-
terpretable by design (thus, addressing interpretability ambiguities
during ablations and approximate post-hoc interpretations). In fu-
ture work, we will explore different LLM and KG choices and vary
the order of moments considered. Furthermore, we will explore
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other naturally interpretable combination functions (e.g., linear
combination ensemble in this work) that can add layers of expres-
siveness to the interpretation (e.g., abstraction level in a hierarchy
of concepts from a KG).
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