
A Feature Set of Small Size for the PDF Malware Detection
Ran Liu

Univ. of Maryland, Baltimore County
rliu2@umbc.edu

Charles Nicholas
Univ. of Maryland, Baltimore County

nicholas@umbc.edu

ABSTRACT
Machine learning (ML)-based malware detection systems are be-
coming increasingly important as malware threats increase and get
more sophisticated. PDF files are often used as vectors for phish-
ing attacks because they are widely regarded as trustworthy data
resources, and are accessible across different platforms. Therefore,
researchers have developed many different PDF malware detection
methods. Performance in detecting PDF malware is greatly influ-
enced by feature selection. In this research, we propose a small
features set that don’t require too much domain knowledge of the
PDF file. We evaluate proposed features with six different machine
learning models. We report the best accuracy of 99.75% when using
Random Forest model. Our proposed feature set, which consists of
just 12 features, is one of the most conciseness in the field of PDF
malware detection. Despite its modest size, we obtain comparable
results to state-of-the-art that employ a much larger set of features.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Arti-
ficial immune systems; • Computing methodologies → Ma-
chine learning; • Applied computing → Document manage-
ment and text processing;

ACM Reference Format:
Ran Liu and Charles Nicholas. 2023. A Feature Set of Small Size for the
PDF Malware Detection. In M. Gaur, E. Tsamoura, S. Sreedharan, S. Mittal,
Proceedings of the Third ACM SIGKDD Workshop on Knowledge-infused
Learning (KDD KiL 2023). Long Beach, California, USA, August 6, 2023. Use
permitted under Creative Commons License Attribution 4.0 International (CC
BY 4.0).ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
The flexibility and portability of PDF files makes them a popular
target for malware attacks. Over time, different approaches have
been proposed to detect PDF malware. Machine learning and neu-
ral network based models have particularly shown promise in these
detection tasks. However, the performance of the model relies on
the quality of the feature set chosen[5]. Features used in malware
detection are grouped into two categories: dynamic and static. Dy-
namic features are obtained from monitoring program execution,
such as APIs called, instructions executed, or IP addresses accessed.
Conversely, static features are obtained through static analysis.
Both categories have some limitations. Dynamic features need to
be executed in a sandbox environment, where some sophisticated
malware can detect the sandbox environment and consequently
alter their behaviors. Static features, on the other hand, can be
obfuscated by attackers using evasion techniques, making the de-
tection challenging. This raises concerns that some commonly used
features have been thoroughly investigated by attackers. If attack-
ers have exploited these features to perform a successful evasive

attack, PDF malware detection systems built on the same or similar
features set might become vulnerable. This highlights the impor-
tance of the usage of PDF-specific features, which may reduce the
attack surface. Earlier research, including PDFRate, have employed
some PDF-specific features such as the number and the occurrence
of a specific PDF objects for model training, which obtained promis-
ing accuracy in PDF malware detection[9][7]. Nevertheless, most
of these features requires a large amount of domain knowledge to
extract. Moreover, their feature sets are large and complex, which
may potentially lead to over-fitting. Consequently, it’s desirable to
have a simple and small PDF-specific features set that may achieve
detection accuracy comparable to more complex features.

In this paper, we limit the scope of PDF-specific features to those
that are unique to PDF files, hence excluding most dynamic features
such as system call sequences, API call sequences, and some static
features such as binary code. Furthermore, we exclude features that
need extensive domain knowledge for PDF files, which means that
most keyword-based features, including JavaScript code in PDF
files, are not used in our research.

PDF files can be viewed as a set of interconnected objects. Some
work, such as Hidost’s, extracts the tree structure of the PDF and
uses the binary counts for these paths as features[15]. Our pre-
vious work showed that such tree structures contain sequential
relationships and can be used to train the Time Series Model for
PDF malware detection. In this paper, we propose a novel set of
graph features to accurately detect PDF malware. We investigated
multiple types of graph tree features by parsing a PDF file into
tree representative features. For specific feature types, our research
demonstrated statistical differences between benign and malicious
PDFs. Using the proposed feature set to train a machine learning
model, we show empirically that the model can successfully de-
tect 99.75% of PDF malware samples with only 12 features. The
primary contributions of our study are the introduction of one of
the smallest PDF specific feature sets. We have conducted a thor-
ough investigation and performance analysis of the ML - models
based on these proposed features. Furthermore, we benchmarked
our results against state-of-the-arts, indicating that our feature set
is promising.

1.1 PDF file Structure
A PDF file is structured using interconnected modules known as
objects, which are made up of four parts: a header, a body, a cross-
reference table, and a trailer, as shown in Figure 1.

• Header: The header contains information about the PDF
version and is marked with the ’%’ symbol.

• Body: The body, as the primary section of the PDF file, con-
sists of objects that define all the operations performed by
the file. These objects, which include both indirect and direct
objects, characterize the functionality of each object using

keywords marked with ’/’. For example, ’/Length’ and ’/Fil-
ter’ are such keywords. Indirect objects, which start with a
numeric identifier like ’4 0 R’, contain information in a di-
rectory and can be referenced by other objects. For example,
an object starting with ’1 0 R’ can be referred to by other
objects using ’1’, the sequence number. This structure allows
for the interconnection of objects. The generation number,
usually set to 0, is represented by the second digit, although
it can be other number in some cases. Objects are usually end
with the ’endobj’ marker. A specific type of object, known
as a stream, starts with the keyword ’stream’ and ends with
’endstream’ and ’endobj’. The content of the stream object,
which includes elements like images and texts, is encoded
using filters.

• Cross-reference table: This table contains the location ref-
erences for each object. A PDF parser uses this table to find
the object reference in the memory for parsing. The cross-
reference table, marked by ’Xref’ followed by numbers, indi-
cates the total number of objects in the references with its
last number. For instance, ’0 16’ indicates a total of 16 objects
in the cross-reference table.

• Trailer: trailer contains information about the file such as
the number of objects using keyword ’/Size’. It also contains
a reference to the root object using keyword /Root and meta-
data using keyword /Info. The file structure organizes the
logical access order for the PDF file. When a PDF reader ap-
plication accesses a PDF file, it first locates the trailer to find
the root object. Then the parser uses a cross-reference table
to parse each indirect object to decompress all data. In this
way, the content of the PDF is made visible to the user. When
a modification happens in the PDF file, like inserting a page
into the PDF, a new body, trailer, and cross-reference table
will be appended to the original file accordingly, and a new
version number will be generated. However, because the
cross-reference table sets a strict boundary for each object,
removing objects from the previous version can cause errors.
Thus, an attacker is more likely to add features instead of
removing features.

Each object is labeled with a number, allowing it to be referenced
by other objects. Object information is stored in the cross-reference
table, while the trailer indicates the root object’s number and the
cross-reference table’s location. By querying the cross-reference
table, catalog objects can be found. The catalog object serves as
the entire document’s root object, containing the PDF document’s
outline and the page group object’s reference.

1.2 Related Work
In the field of machine learning-based PDF malware detection, two
primary types of features are commonly used - static and dynamic
features. The dynamic features are obtained by running the PDF
in a controlled environment, which allows for the collection of
PDF running behaviors such as sequences of system calls and API
calls[11][6]. However, most dynamic features are typically not dis-
tinctive to PDF files, and the building of a robust sandbox environ-
ment increases the complexity of the detection process. Despite the

Figure 1: PDF Structure

promising results in malware detection tasks using dynamic fea-
tures, our work primarily focuses on the use of static features. Previ-
ously used dynamic and static features require significant amounts
of domain knowledge for feature extraction. In contrast, our goal
is to employ features that demand minimal domain knowledge and
are unique to PDF files.

There are three categories of static features. The first type of
static features are obtained from a keyword-based analysis, which
involves searching for predefined keywords such as ’/Javascript’,
’/OpenAction’, ’/GoTo’, ’/URI’, and ’/RichMedia’. These keywords
are often associated with malicious code injection. Features can
include the number of keywords or simply their presence. The ma-
licious payloads are usually inserted into objects associated with
such keywords, making them useful features for PDF malware de-
tection. The second type of static features are obtained through a
tree structure-based analysis. This method constructs the object
tree representation to capture the connections between items. The
tree structure can provide insights into the hierarchical connections
between the objects of the PDF file, which may reveal malware-
related behaviors. Lastly, static features can be obtained using code-
based analysis, which focuses on malicious strings and functions in
Javascript code. As PDF malware often manipulates Javascript code
to execute malicious activities, the presence of specific code strings
or functions may indicate the presence of malware. PDF malware
detectors may employ one or more of the features described above.
One such example is Hidost[15], a system that uses the Poppler PDF
parser[2] to extract tree structural paths of objects in a PDF file,
which are then used as features in the classification process. Hidost
is implemented with two different models: Support Vector Machine
(SVM) and Random Forest (RF)[14][15]. SVM is a supervised learn-
ing model that creates an optimal hyperplane to separate different
labels. RF is a meta-estimator that integrates different decision trees
to improve classification accuracy. The researchers trained their
model using a dataset of 10,000 randomly selected files, maintain-
ing a malicious-to-benign ratio of 1:1. The complete PDF dataset
comprised 407,037 benign and 32,567 malicious files. The Hidost

2

system has 99.8% accuracy and less than 0.06% false positive rate
for both models.

The PDFrate classifier is implemented using an RF algorithm
with 99% accuracy and 0.2% false positive rate over the Contagio
malware dataset[9]. PDFrate uses the metadata, which includes
the names of the files’ authors, the size of the file, its location, and
the amount of certain keywords, and the content of the PDF files
as features. The authors manually define the feature set, which
has 202 features in all, including counts for different keywords
and specific fields in the PDF. Examples include the number of
characters in the author field, the quantity of “endobj” keywords, the
total number of pixels in all the photos, the quantity of JavaScript
markers, etc. The Mimicus implementation of PDFrate, claiming to
get a close approximation, only makes use of 135 of these features.
The two versions of PDFrate, PDFrate-v1 and PDFrate-v2, each
use a different machine learning model[18][12]. The classifiers
in PDFrate-v2 use mutual agreement to implement an ensemble
technique. The term “uncertain” is introduced into the classifier
voting, where rates of 25–50% are regarded as benign uncertainty
and rates of 50–75% as malicious uncertainty.

PjScan is a tool that concentrates on examining JavaScript code[4].
It uses Poppler[2] as a parser to extract tokens from JavaScript code,
and a one-class SVM as a classifier. PjScan achieved 85% detection
accuracy. Malware Slayer is available in two variants[8][7]. The
original Slayer extracts keyword features from PDF files using a
pattern recognition method and labels samples using a random for-
est algorithm. Slayer NEO uses the PeePDF[16] and Origami[13]
parsers to extract structural data as features and the AdaBoost al-
gorithm for classification.

Maryam et al. proposed a PDF malware detection system based
on stacking learning[3]. Their approach is based on the idea that
combining different classifiers could produce improved accuracy as
each classifier operates based on unique data assumptions. Their
feature set included ten general features, such as PDF size and
title character count, as well as structural features such as the
amount of keywords and objects. These extracted features were
initially fed into a base layer consisting of SVM, Random Forest,
MLP, and AdaBoost. The prediction outputs from this layer were
subsequently fed into a meta-layer featuring Logistic Regression,
K-Nearest Neighbors, and Decision Trees. Their reported metrics
on the hybird dataset including Contagio dataset were impressive:
an accuracy of 99.98%, precision of 99.84%, recall of 99.89%, and an
F1 score of 99.86%.

2 STATISTICAL ANALYSIS OF A FEATURE SET
We now introduce our proposed feature set. We use the Contagio
dataset, which includes 9,000 benign and 10,982 malicious PDF
samples, to extract features[9]. This dataset was chosen due to its
accessibility and its large number of labeled samples. We used the
pdfrw library to extract tree structure paths for each file, and while
some samples were corrupted, we were able to successfully extract
path objects from 7,396 benign PDF files and 10,814 malicious PDF
files[17]. Our feature selection strategy is to minimize required
domain knowledge during feature extraction. Consequently, despite
the promising results achieved by keyword-based features in other
research, we chose not to use them. We have already noted that a

PDF can be represented as a tree structure of objects, prompting
our investigation into graph features. Our selection of features was
facilitated by comparing mean values, standard deviations with 95%
CI and Quantiles. This led us to select the following features:

• Distribution of children per node: the average (avg children),
median (median children) and variance of children per node
(var children).

• Number of leaves in the tree (num leaves).
• Number of nodes (num nodes).
• The depth of the tree (depth).
• Average degree (avg degree).
• Degree assortativity coefficient (degree assortativity).1
• The average shortest path length (avg shortest path).
• How nodes in a graph tend to cluster together (avg clustering
coefficient).

• Graph density (density).
We applied statistical analysis to investigate the proposed fea-

tures of benign and malicious PDF files. The key statistical metrics
in our investigation were: the 75% quartile, median 50%, 25% quar-
tile, 95% CI mean and 95% CI standard deviation.

Table 1: Quantiles for the Proposed Feature Set for Benign
PDFs

Benign PDF Quantiles
75% 50% 25%

avg children 1.9416 1.5218 1.44
avg clustering coefficient 0.0640 0.0185 0.097
avg degree 3 3 2
avg shortest path 1.0667 0.7118 0.5421
degree assortativity -0.3781 -0.4298 -0.5569
density 0.0215 0.0083 0.0068
depth 4 4 4
median children 0 0 0
num edges 459 309 189
num leaves 188 158 71
num nodes 260 199 135.25
var children 158.2680 94.4440 51.1347

Note that Table 1, Table 3, Table 2 and Table 4 show a significant
difference in the proposed feature set between benign and mali-
cious PDFs. The statistical difference between benign and malicious
PDFs is further visualized in the box plots (Figure 2 and Figure 3),
providing clear graphical representations of these differences. We
excluded the median degree, depth, and median children from the
box plots since they are discrete values.

3 EXPERIMENTAL RESULTS
3.1 PDF Malware Detection Results
Having shown a significant difference in the proposed feature set
between benign and malicious PDFs, we move on to demonstrate
the feature set’s utility in experimental evaluation. we use the Con-
tagio dataset and the pdfrw library to extract tree structure paths
1Degree assortativity refers to the tendency for nodes of high or low degree to be
connected to other nodes of high or low degree, respectively.

3

Table 2: Quantiles for the Proposed Feature Set for Malicious
PDFs

Malicious PDF Quantiles
75% 50% 25%

avg children 1.7619 1.5758 1.5714
avg clustering coefficient 0.0698 0.0413 0.0374
avg degree 3 3 3
avg shortest path 0.6 0.5595 0.4542
degree assortativity -0.2821 -0.3126 -0.3405
density 0.0881 0.0786 0.0686
depth 4 4 4
median children 1 1 1
num edges 40 37 33
num leaves 10 10 10
num nodes 27 21 21
var children 4.1814 4.0272 3.6734

Table 3: 95% CI Mean Comparison for the Proposed Feature
Set

Benign Malicious
95% CI Mean 95% CI Mean

avg children 1.8601 - 1.9044 1.6359 - 1.6469
avg clustering coefficient 0.0372 - 0.0392 0.0501 - 0.0512
avg degree 3.1385 - 3.2299 2.8545 - 2.8762
avg shortest path 0.8079 - 0.8279 0.5430 - 0.5498
degree assortativity -0.4589 - -0.4541 -0.3071 - -0.3033
density 0.0205 - 0.0213 0.0764 - 0.0772
depth 4.2561 - 4.2831 3.9594 - 3.9692
median children 0.1506 - 0.1942 0.9405 - 0.9612
num edges 441.5762 - 471.6670 43.8435 - 45.6364
num leaves 152.1234 - 157.9772 12.2298 - 12.7902
num nodes 201.8999 - 209.8423 25.4634 - 26.2143
var children 114.7908 - 122.0534 4.8081 - 5.34606

for each file, and (as mentioned above) we were able to successfully
extract path objects from the 7,396 benign PDF files and 10,814 ma-
licious PDF files[17]. We use scikit-learn to evaluate the model’s
performance[10]. The confusion matrix we used is shown as Table 5

We apply 5-fold cross validation to 6 machine learning classifiers
trained with the proposed 12 graph features. To show that our re-
sults are statistically significant, we report 95% Confidence Interval
(95% CI) of the Precision, Recall in Table 6 and 95% CI F1 score in
Table 7. The recall value indicates the ratio of samples have been
correctly classified. We report the best recall value for the malicious
class with Random Forest, indicating that 99.73% to 99.77% of the
malicious samples are correctly detected, while the benign class’s
recall value is 0.9987 - 0.9991, which means that 99.87% to 99.91%
of benign samples are correctly classified.

We report the Accuracy, True Positive Rate (TPR), False Positive
Rate (FPR), False Negative Rate (FNR) and True Negative Rate (TNR)
in Table 8. The result indicates our proposed features have good

Table 4: 95% CI Standard Deviation Comparison for the Pro-
posed Feature Set

Benign Malicious
95% CI SD 95% CI SD

avg children 0.9561 - 0.9874 0.2881 - 0.2959
avg clustering coefficient 0.0427 - 0.0441 0.0274 - 0.0282
avg degree 1.9738 - 2.0385 0.5662 - 0.5815
avg shortest path 0.4358 - 0.4500 0.1759 - 0.1806
degree assortativity 0.1097 - 0.1133 0.1005 - 0.1032
density 0.0230 - 0.0238 0.02047 - 0.0210
depth 0.5867 - 0.6059 0.2579 - 0.2648
median children 0.9462 - 0.9772 0.5416 - 0.5563
num edges 649.6877 - 670.9714 46.9322 - 48.2001
num leaves 126.3856 - 130.5260 14.6701 - 15.0664
num nodes 171.4772 - 177.0948 19.6561 - 20.1871
var children 156.8088 - 161.9459 14.0821 - 14.4626

Figure 2: Box plot of the benign PDFs. Features are on the
y-axis.

Table 5: Confusion Matrix.

Detected as Benign Detected as Malicious
Benign True Positives (TP) False Negatives (FN)
Malicious False Positives (FP) True Negatives (TN)

overall performance. We report the best accuracy of 0.9975 when
using Random Forest model.

3.2 Comparison with Other Works
For model performance comparison, we select models with reported
results in the literature for direct comparison.

We report the best result obtained by applying the Random Forest
model. Table 9 presents the comparison of the evaluation metrics

4

Figure 3: Box plot of the malicious PDFs. Features are on the
y-axis.

Table 6: 95% CI Precision and Recall for each label.

Classifier Label Precision Recall

XGBoost Malicious 0.9939 - 0.9977 0.9958 - 0.9966
Benign 0.9982 - 0.9987 0.9973 - 0.9991

Naive Bayes Malicious 0.8769 - 0.9564 0.8000 - 0.9750
Benign 0.8698 - 0.9683 0.7850 - 0.9824

Multi-layer Perceptron Malicious 0.9871 - 0.9911 0.9811 - 0.9940
Benign 0.9946 - 0.9963 0.9946 - 0.9963

Decision Tree (J48) Malicious 0.9963 - 0.9973 0.9946 - 0.9982
Benign 0.9972 - 0.9980 0.9959 - 0.9986

Random Forest Malicious 0.9966 - 0.9982 0.9973 - 0.9977
Benign 0.9987 - 0.9991 0.9987 - 0.9991

Simple Logistic Malicious 0.9739 - 0.9879 0.9820 - 0.9824
Benign 0.9878 - 0.9885 0.9831 - 0.9917

Table 7: 95% CI F1 Score for each label.

Classifier Label F1 Score

XGBoost Malicious 0.9953 - 0.9968
Benign 0.9980 - 0.9986

Naive Bayes Malicious 0.8712 - 0.9234
Benign 0.8671 - 0.9227

Multi-layer Perceptron Malicious 0.9861 - 0.9906
Benign 0.9946 - 0.9963

Decision Tree (J48) Malicious 0.9959 - 0.9972
Benign 0.9970 - 0.9979

Random Forest Malicious 0.9970 - 0.9979
Benign 0.9987 - 0.9991

Simple Logistic Malicious 0.9781 - 0.9849
Benign 0.9854 - 0.9901

Table 8: Accuracy, True Positive Rate (TPR), False Positive
Rate (FPR), False Negative Rate (FNR) and True Negative Rate
(TNR) with the Proposed Features Set.

Classifier Accuracy TPR FPR FNR TNR
XGBoost 0.9964 0.9980 0.0042 0.0020 0.9958
Naive Bayes 0.9006 0.7850 0.0268 0.2150 0.9732
Multi-layer Perceptron 0.9926 0.9919 0.0088 0.0081 0.9912
Decision Tree 0.9967 0.9959 0.0019 0.0041 0.9981
Random Forest 0.9975 0.9980 0.0023 0.0020 0.9977
Simple Logistic 0.9822 0.9817 0.0180 0.0183 0.9820

Table 9: Comparison with other models.

Model Precision Recall F1-Score Accuracy
Model[18] 0.9970 0.9970 0.9970 0.9965
Model[1] 0.9880 0.9890 0.9885 0.9884
Model[3] 0.9888 0.9887 0.9877 0.9869
Our work 0.9973 0.9974 0.9974 0.9975

to other work. The results show that our work beats other work
while being significantly smaller than the feature set they use.

The main weaknesses of the feature set we propose is that it
is vulnerable to some evasive attacks. Detectors that employ this
feature set can be compromised through the insertion, deletion,
or alteration of a subtree. In order to enhance the robustness of
the detector, one potential strategy is to enrich the feature set and
diversify the feature types employed. We observe that the parser
did not successfully parse all objects for some malware specimens.
The effectiveness of the our approach is influenced by the quality
of parsed PDF objects.

4 CONCLUSION
In this work, we introduced a new features set for PDF malware
detection that based on PDF tree structure. Our work aimed to
address the need of finding a small features set without needing
too much domain knowledge of the PDF file. Our work might serve
as a baseline for the future investigation. We do not expect our
work can replace the current used static and dynamic features now
or in the future, but our work might inspire researchers with an
alternative way to build a malware detection model. In the future
task, we plan to explore the other features to improve the overall
performance and enhance the robustness.

REFERENCES
[1] Qasem Abu Al-Haija, Ammar Odeh, and Hazem Qattous. 2022. PDF Malware

Detection Based on Optimizable Decision Trees. Electronics 11, 19 (9 2022), 3142.
https://doi.org/10.3390/electronics11193142

[2] FreeDesktop.org. 2018. Poppler.
[3] Maryam Issakhani, Princy Victor, Ali Tekeoglu, and Arash Lashkari. 2022. PDF

Malware Detection based on Stacking Learning. In Proceedings of the 8th Inter-
national Conference on Information Systems Security and Privacy. SCITEPRESS
- Science and Technology Publications, 562–570. https://doi.org/10.5220/
0010908400003120

[4] Pavel Laskov and Nedim Šrndić. 2011. Static detection of malicious JavaScript-
bearing PDF documents. In Proceedings of the 27th Annual Computer Security

5

Applications Conference. ACM, New York, NY, USA, 373–382. https://doi.org/10.
1145/2076732.2076785

[5] Ran Liu, Maksim Eren, and Charles Nicholas. 2023. Can Feature Engineering
Help Quantum Machine Learning for Malware Detection? (5 2023).

[6] Ran Liu and Charles Nicholas. 2023. IMCDCF: An Incremental Malware Detection
Approach Using Hidden Markov Models. Technical Report. MALWARE TECHNI-
CAL EXCHANGE MEETING (MTEM) 2021.

[7] Davide Maiorca, Davide Ariu, Igino Corona, and Giorgio Giacinto. 2015. A
structural and content-based approach for a precise and robust detection of malicious
PDF files; A structural and content-based approach for a precise and robust detection
of malicious PDF files. Technical Report. http://www.mozilla.org/rhino

[8] Davide Maiorca, Giorgio Giacinto, and Igino Corona. 2012. A Pattern Recognition
System for Malicious PDF Files Detection. 510–524. https://doi.org/10.1007/
978-3-642-31537-4{_}40

[9] Mila Parkour. [n. d.]. Malicious Documents Archive for Signature Testing and
Research - Contagio Malware Dump.

[10] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman,
Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. 2012. Scikit-learn: Machine Learning in Python. (1 2012).

[11] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. [n. d.].
Automatic Analysis of Malware Behavior using Machine Learning. Technical
Report. http://www.iospress.nl,

[12] Charles Smutz and Angelos Stavrou. 2016. When a Tree Falls: Using Diversity in
Ensemble Classifiers to Identify Evasion in Malware Detectors. In Proceedings
2016 Network and Distributed System Security Symposium. Internet Society, Reston,
VA. https://doi.org/10.14722/ndss.2016.23078

[13] Sogeti ESEC Lab. 2015. Origami.
[14] Nedim Šrndic and Pavel Laskov. 2013. Detection of Malicious PDF Files Based

on Hierarchical Document Structure. In Proceedings of the 20th Annual Network
& Distributed System Security Symposium. Citeseer, 1–16.

[15] Nedim Šrndić and Pavel Laskov. 2016. Hidost: a static machine-learning-based
detector of malicious files. EURASIP Journal on Information Security 2016, 1 (12
2016), 22. https://doi.org/10.1186/s13635-016-0045-0

[16] Trevor Tonn and Kiran Bandla. 2013. PhoneyPDF.
[17] Weilin Xu, Yanjun Qi, and David Evans. 2016. Automatically Evading Classifiers:

A Case Study on PDF Malware Classifiers. In Proceedings 2016 Network and
Distributed System Security Symposium. Internet Society, Reston, VA. https:
//doi.org/10.14722/ndss.2016.23115

[18] Suleiman Y. Yerima, Abul Bashar, and Ghazanfar Latif. 2022. Malicious PDF
detection Based on Machine Learning with Enhanced Feature Set. In 2022 14th
International Conference on Computational Intelligence and Communication Net-
works (CICN). IEEE, 486–491. https://doi.org/10.1109/CICN56167.2022.10008374

6

